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Abstract—This paper proposes a new measure that continu-
ously measures the degree of inconsistency for a linear system.
We apply the new measure to two essential vision problems.
One is to predict the fidelity of a local optical flow computation
system; The other is to detect motion boundaries. Experimental
results on benchmark sequences validate the performance of the
proposed measure on both problems.

Index Terms—Optical flow, motion boundary, confidence mea-
sure, inconsistent linear system.

I. INTRODUCTION

The linear system A �X = �b is a crucial model in a number of

computer vision problems. With each equation of the system

providing a constraint on the unknown vector �X , the problem

is solved by finding the vector that best satisfies all the

constraints. For example, �X = (AT A)−1AT�b is one of the

most widely used pseudo-solutions for A �X = �b.

However, in many cases, the system is ill-posed in the sense

that:

1) The solution of the system is not unique. This happens

when the system is deficient in independent constraints.

Generally the deficiency can be detected by A’s rank-

deficiency or infinite condition number. In real applica-

tions, due to the existence of noise, matrix A almost

always has full rank. Thus rather than being rank de-

ficient, it is more likely that the system is “well-posed

but ill-conditioned”, where the condition number is large

but finite.

2) The solution of the system does not exist. This happens

when the system has “extra” constraints that are mutu-

ally contradictory. In this case, the pseudo-solution is

severely distorted, as the system contains at least one

constraint that is inconsistent with the true vector �X . It

is thus important to detect the inconsistency before the

pseudo-solution is applied. If inconsistency is detected,

the linear system is not an appropriate model for the

problem.

Mathematically, a necessary and sufficient condition for the

system to be consistent is that the coefficient matrix A and

the augmented matrix [A|�b] have the same rank. Thus it seems

possible to detect inconsistency by counting the number of the

non-trivial singular values of each matrix and taking the dif-

ference. However, unsatisfactory results are often obtained due

to the following factors. First, as pointed out by Shechtman-

Irani in [1], the number of non-trivial eigenvalues depends on

the predefined level of “being trivial”. A wrong threshold may

lead to wrong rank detection. Second, rank comparison leads

to a binary decision of consistency or inconsistency, which is

inflexible. In real applications, due to the existence of noise,

a small degree of inconsistency should be allowed; whereas

if the system exhibits strong inconsistency beyond the noise

level, it should be discarded.

In this paper, we use a different sufficient and necessary

condition for A �X = �b to be consistent. Based on this,

we derive a new COnstraint INconsistency (COIN) measure,

which has the following advantages:

• Detects inconsistency due to solution non-existence;

• Provides a continuous measure of the degree of inconsis-
tency of a system;

• Derivation is general—it works for any linear system;

• Does not require the linear system to be solved before-

hand;

• Scale invariant;

• Low computational cost.

We discuss the application of the COIN measure (i) as a

confidence measure for local optical flow computation; (ii) as a

motion boundary detector. Experimental results on benchmark

sequences validate the superior performance of the COIN

measure to previous confidence measures and rank-increase

measures on both problems.

II. PROBLEM STATEMENT AND RELATED WORK

Let A �X = �b be a generic linear system, where A ∈ R
m×n,

�b ∈ R
m×1 are computed from the observed data, and �X ∈

R
n×1 is the unknown vector to be solved.

This linear system, although simple, is one of the most

influential models in computer vision. A typical use of the

linear system is for local optical flow computation, which

assumes feature invariance (e.g.,brightness [2], gradient [3])

over time and flow smoothness (e.g.,constant [2], affine [4])

in a local neighbourhood. Under these assumptions, each pixel

in the local patch provides a constraint for the velocity of the

patch center, and the collection of the constraints forms a linear

system. The accuracy of the solution that is obtained hinges on

the well-posedness of the system. That is, the system should
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have a solution that (i) exists; (ii) is unique; (iii) depends

continuously on the observed data [5]. Thus to obtain an

accurate estimate of the true vector �X , measures that evaluate

the well-posedness of the system are needed.

Measuring the confidence that can be placed in a solution to

a linear system has attracted significant attention in computer

vision. However, this has focused mainly on inaccuracy caused

by the non-uniqueness of the solution. In terms of optical

flow, this corresponds to the notorious aperture problem.

The fidelity of the pseudo-solution is generally measured by

quantifying the rank deficiency of A [6]. For example, Lucas-

Kanade use the least significant eigenvalue of AT A [2]; Uras

et al. use the condition number of A [3]; Bertero et al. and

Barron et al. use the determinant [7] [8]; and Simoncelli use

the trace [9]. All these measures aim at detecting the deficiency

of independent constraints. If detected, one approach to obtain

an unique solution is to integrate other constraints, such as

regularized variation of the flow field, with the system [7].

Except for the condition number measure, these methods

neglect the ambiguity caused by the system’s scale. More

specifically, systems A �X = �b and αA �X = α�b(α �= 0) have

same solution manifolds and are always solved by the same

pseudo-solution. Hence the confidence measure of a solution

should be independent of the scaling factor α. However,

the smallest eigenvalue measure, the trace measure and the

determinant measure are all affected by α, which consequently

leads to ambiguity.

Moreover, measuring confidence by solution uniqueness im-

plicitly assumes that the system has solution(s). Unfortunately,

this is quite often not true. In the context of optical flow, if a

local patch contains motion boundaries, the system is prone to

collect constraints that are valid for some neighbouring pixels

but invalid for the center pixel, as they are from different

motion segments. Research in this area has focused on finding

a solution that better tolerates the invalid constraints (e.g.,

[10]). Such a methodology, although it may find a solution

that is less inaccurate, is unable to obtain an accurate solution
from an invalid system. A more practical approach is to predict

the inconsistency, and replace the invalid system by a more

appropriate model. However, to our best knowledge, the only

attempt to measure the system inconsistency is Haussecker et

al.’s coherency measure and corner measure [11], which are

specific to 3D structure tensors. In contrast to previous work,

the proposed COIN measure is based on a general theory on

the consistency of a linear system, and hence can be applied

to any local optical flow computation technique formulated in

this way.

Research has also been carried out on measuring the cer-

tainty of a flow vector after flow computation. In [12] and

[13], such measures are defined as the inverse of specially

designed energy terms associated with particular optical flow

techniques. In [14], [15], the fidelity of a computed flow vector

is measured by its conformity to neighbouring flow vectors,

according to a linear subspace or a statistical model. These

measures, although they can be applied to the flow obtained

by any method, require training data to learn the parameters

of the models. Moreover, they can only be applied to dense

flow field computation. In contrast, the COIN measure predicts

the reliability of a flow vector before it is recovered, which is

important for the algorithm to discard inappropriate constraints

before flow computation. Furthermore, it does not require

dense precomputation of flow vectors in the neighborhood.

We also apply the proposed measure as a simple mo-

tion boundary detection method. A related line of work is

Shechtman-Irani’s rank-increase measure [1], which measures

motion inconsistency in the framework of human behavior

recognition:

Δr =
det(T3D)

det(T2D)λl
,

where T2D and T3D denote the Lucas-Kanade 2D and 3D

structure tensor [2], and λl is the largest eigenvalue of T3D.

The proposed measure and the rank-increase measure are

related in the sense that, if the linear system A �X = �b
degenerates to Lucas-Kanade’s optical flow computation [2],

both measures detect motion inconsistency by comparing the

continuous rank difference between the 2D structure tensor

and 3D structure tensor. However, the two measures are funda-

mentally different in the following aspects. First, the proposed

measure is not limited to Lucas-Kanade’s system. The arrays

A and �b can be generated by the model that best suits the

underlying data, e.g., piecewise affine or planar motion model;

whereas the rank-increase measure is limited to 2D and 3D

structure tensor. Second, the two measures have different

definitions rooted from different mathematical theories. The

rank-increase measure is based on the interlacing property
of symmetric matrices (pp.396, [16]), and the definition does

not take “divided by zero” into consideration; whereas the

proposed measure is based on the projection of�b to the column

space of A, and avoids zeros in the denominator. Third, the

rank increase measure works well if the camera motion is

negligible relative to the object motion, but results in false

positive detection if the camera undergoes fast motion and the

background lacks spatial texture. In this case, both λl and
det(T3D)
det(T2D) correspond to the temporal eigenvalue [17]. As a

consequence, the measure value is near to 1, which indicates

motion inconsistency even if the background undergoes uni-

form motion. On the contrary, the proposed measure is robust

to fast camera motion.

III. A NEW CONSTRAINT INCONSISTENCY MEASURE

In theory, a necessary and sufficient condition for the linear

system A �X = �b to be consistent is that the coefficient

matrix A and the augmented matrix [A|�b] have the same rank

(see p.277, [18] for proof). However, in real applications,

due to the existence of noise, A and [A|�b] are always of

full rank. Furthermore, if m > n, both matrices have rank

equal to the number of their columns. Hence there is always

rank increase from A to [A|�b]. A practical approach is to

map inconsistency to a continuous measure, which can be

used to judge whether the inconsistency comes from noise

or contradicted constraints. Aiming at such a measure, we
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propose another necessary and sufficient condition for the

system to be consistent.

Theorem 1: Define �p = AT�b, G = AT A, and let real

numbers λ1 ≥ · · · ≥ λn be the sorted eigenvalues of G and

�e1, · · · , �en be the corresponding orthonormal eigenvectors.

Define θ by

θ =
r∑

i=1

(
�pT · �ei

)2
λi

, where r = rank(A). (1)

System A�x = �b is consistent if and only if
∥∥∥�b∥∥∥2

2
= θ.

Proof: Let A = USV T be the singular value decompo-

sition of A, where U and V are orthogonal matrices and the

diagonal matrix S contains the non-zero singular values of A,

i.e.,
√

λ1,
√

λ2, · · · ,
√

λr.

Denote the ith column of U by �ui. rank(A) = rank([A|�b])
if and only if �b is in the column space of A, which is spanned

by the first r columns of U . That is,

rank(A) = rank([A|�b])

∥∥∥�b∥∥∥2

2
=

r∑
i=1

(�bT �ui)2; (2)

Note that G = AT A = V S2V T , and hence matrix V contains

the eigenvectors of G, i.e.,

V = [�e1 �e2 · · · �en] . (3)

It can then be easily verified that

A�ei = USV T�ei =
√

λi�ui. (4)

By the definition of �p, Eq.4 leads to

�pT�ei = �bT A�ei =
√

λi
�bT �ui. (5)

Recall Eq. 2, thus

r∑
i=1

(
�pT�ei

)2
λi

=
r∑

i=1

(�bT �ui)2 =
∥∥∥�b∥∥∥2

2
⇔ rank(A) = rank([A|�b])

(6)

Eq.6 proves that

rank(A) = rank([A|�b]) ⇔
∥∥∥�b∥∥∥2

2
= θ.

This proves Theorem 1.

The theorem has a direct corollary as stated below.

Corollary 2: For any vector �b and θ defined as in Theorem

1, ‖b‖2
2 ≥ θ.

Proof: With the same notations as in the proof of Theo-

rem 1, the columns of U form an orthogonal basis of R
m×m.

Hence any vector �b ∈ R
m×1 satisfies∥∥∥�b∥∥∥2

2
=

m∑
i=1

(�bT �ui)2 ≥
r∑

i=1

(�bT �ui)2. (7)

Substituting Eq.6 into the R.H.S. of the inequality, the follow-

ing inequality can be easily verified.∥∥∥�b∥∥∥2

2
≥ θ. (8)

Theorem 1 states that ‖b‖2
2 can not take any arbitrary value if

the system is expected to have solution(s). In other words, for

the system to be solvable, ‖b‖2
2 must equal an ideal value

θ. Theoretically, if the constraints in A �X = �b are strictly

consistent, then ‖b‖2
2 − θ is exactly zero, and vice versa.

However, due to the existence of noise, each constraint is

a noisy observation of the true underlying data. Therefore,

it is more practical to allow ‖b‖2
2 − θ = nε, where nε is a

noise signal of small magnitude. Otherwise, large magnitude

of ‖b‖2
2 − θ is evidence for rank increase from the coefficient

matrix to the augmented matrix, and hence the inconsistency

of the constraints can be inferred. Therefore our COnstraint

INconsistency (COIN) measure is defined by

m =
∥∥∥�b∥∥∥2

2
− θ. (9)

It can be shown that the COIN measure depends continu-

ously on the underlying data, which is important to indicate

the degree of inconsistency of a linear system faithfully. It also

has the advantage of low computational cost, as it uses the

eigendecomposition AT A only; whereas the rank comparison

of A and [A|�b] requires the SVD of both matrices.

It is worth noting that θ, which is the projection of �b
to the column space of A, coincides with the least squares

solution of the system Ax = b. In practice, it can therefore

also be obtained as AA+�b, where A+ is the Penrose-Moore

pseudoinverse, or by other methods for calculating a least

squares solution and residual.

IV. TWO APPLICATIONS OF THE COIN MEASURE

In this section, we discuss the applications of the COIN

measure to two fundamental motion problems: (1) local optical

flow computation confidence measure, (2) motion boundary

detection. First, we illustrate the formulation of a local optical

flow system by Lucas-Kanade’s pioneering work.

A. The COIN measure for LK system

The basic optical flow constraint states that each pixel

corresponding to a fixed location on a moving surface has

constant brightness over time. Denoting image intensity at

spatial-temporal position (x, y, t) by E(x, y, t), this can be

written as:

dE

dt
= Exxt + Eyyt + Et = 0, (10)

where the subscripts denote the corresponding partial deriva-

tives, and (xt, yt) is the pixel’s flow vector to be solved.

Additionally, Lucas-Kanade assume that the flow is locally

constant. Thus each neighbouring pixel in the local area

contributes another constraint on (xt, yt). The collection of

all the constraints form a linear system A �X = �b, where
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X = (xt, yt). In this linear system, AT A and [A|�b]T [A|�b]
are 2D and 3D structure tensors, i.e.,

AT A =

[ ∑
ExEx

∑
ExEy∑

ExEy

∑
EyEy

]
;

[A|b]T [A|b] =

⎡
⎢⎣
∑

ExEx

∑
ExEy

∑
ExEt∑

ExEy

∑
EyEy

∑
EyEt∑

ExEt

∑
EyEt

∑
EtEt

⎤
⎥⎦ ,(11)

where the summation is taken over the local area. Let λ1 ≥ λ2

be the eigenvalues of the 2D structure tensor, and �e1, �e2 be

the corresponding eigenvectors. The COIN measure in this

example is given by

m =

{ ∑
E2

t if rank(A) = 0;∑
E2

t −∑r
i=1

(�p·�ei)
2

λi
if rank(A) = r;

(12)

where �p = [
∑

ExEt

∑
EyEt].

If we apply Theorem 1 to this example, the following Corol-

lary seems straightforward, by noting that rank(AT A) =
rank(A) and rank([A|�b]T [A|�b]) = rank([A|�b]).

Corollary 3: The Lucas-Kanade system is consistent if and

only if the 2D and 3D structure tensors have same rank.

Since the advent of Lucas-Kanade flow computation, many so-

phisticated local flow models have been proposed. Commonly,

they are modeled as solving a linear system A �X = �b, where

A and �b contain the spatial and temporal derivatives of E
at several positions, and �X is the unknown vector of motion

parameters. The connection between the motion inconsistency

and constraint inconsistency, thus can be generalized to these

local optical flow systems.

B. Confidence Measure for Local Optical Flow Computation

If a linear system A �X = �b is inconsistent, the estimated

solution will not be accurate. In general, the more inconsistent

the system, the more distorted the solution. Based on this

observation, we measure the confidence of the recovered flow

by the system’s consistency.

As discussed in Section II, a proper confidence measure

should be free of the scaling ambiguity. Therefore, we nor-

malize �b to unit norm and scale A accordingly, if
∥∥∥�b∥∥∥

2
�= 0.

If
∥∥∥�b∥∥∥

2
= 0, A and [A|�b] must have the same rank, and so

our confidence measure is defined by

c =

⎧⎨
⎩

1, if
∥∥∥�b∥∥∥

2
= 0.

1 − m

‖�b‖2

2

, otherwise.
(13)

where m is the COIN measure. By Corollary 2, it can be

verified that c ∈ [0, 1], where a small c → 0 indicates the low

confidence of the computed flow.

C. Motion Boundary Detection

For long, it has been noticed that if the 3D structure tensor

has full rank, then the local spatial-temporal patch has no
coherent motion (e.g., [11]). In [1], Shechtman and Irani

generalized this observation by pointing out that, if the 3D

structure tensor has higher rank than the 2D structure tensor,

then there is no coherent motion in the patch. The rationale

of the generalization, however, is based on a case by case

study of all possible ranks that the structure tensors can

have (Section 4, [1]). Section IV-A sheds a different light on

Shechtman and Irani’s theory. That is, the 3D structure tensor’s

rank increase, which implies lack of coherent motion, is just

another expression of the inconsistency among the optical flow

constraints in Lucas-Kanade’s system.

Therefore, the COIN measure can be applied to the same

problem as a generalization of the rank-increase measure. In

[1], the motion inconsistency is defined in the framework of

human behavior similarity, whereas in this work we apply

the COIN measure to motion boundary detection, with the

large COIN value signaling a high probability of a motion

boundary’s presence. Unlike the confidence measure, the mo-

tion inconsistency score is not normalized by
∥∥∥�b∥∥∥2

2
, due to

the fact that αA �X = α�b(α �= 0) exhibits different degree of

inconsistency when α varies.

V. EXPERIMENTAL RESULTS

A. Measuring Flow Confidence

We compare the normalized COIN measure to other clas-

sical confidence measures on benchmark sequences: Rub-

berWhale, Hydrangea, Grove2, Grove3 [19], Street [20] and

Yosemite [21]. The measures are least significant eigenvalue

[2], determinant [8], inverse condition number [3] and the cor-

ner measure [11], with large value indexing high confidence.

To have a fair comparison with the corner measure, which is

specific to the 3D structure tensor, we employ Lucas-Kanade’s

flow technique to recover the flow field. To evaluate the perfor-

mance quantitatively, we follow the routine of “sparsification”

used in [1] and [15]. That is, given the confidence scores over

the whole image, we remove the n% (n = 0, · · · , 99) pixels

that have the lowest scores, and compute the average flow error

of the remaining pixels.1 The end-point error e at a pixel (i, j)
is given by the Euclidean distance between the true flow �t(i, j)
and the computed flow �c(i, j), i.e.,

e(i, j) =
∥∥�t(i, j) − �c(i, j)

∥∥
2
.

If the scoring scheme works well, the removal is expected

to decrease the average error of the remaining flow vectors.

In the ideal case, pixels that have the smallest confidence

scores are exactly the pixels that have the largest errors.

This ideal case provides an optimal score Copt(i, j) = 1 −
e(i, j)/ max(i,j)(e(i, j)) as a benchmark [15].

As some measures (the least significant eigenvalue, de-

terminant and inverse condition number) depend on the ill-

condition of the system (the aperture problem), whereas others

(the corner measure and the normalized COIN) depend on the

inconsistency of the system (the motion boundary problem), it

seems that different choices of the local patch size may favor

1On RubberWhale and Hydrangea, some pixels’ ground truth flows are
unknown, which are coded as the black color. These pixels are excluded from
our error statistics.
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different measures – a small patch is more likely to suffer the

aperture problem than the motion boundary problem, whereas

a large patch is in the opposite situation. To test that, we

conducted experiments by varying the patch size from 7×7 to

19×19 gradually. Our experiments show that on all sequences

except RubberWhale, the ranking of different measures is

not affected by the patch size selection. On RubberWhale

sequence, the comparison between the corner measure and the

normalized COIN measure is slightly affected by the size of

the patch, when n > 70%. Fig. 1 plots the average errors

during the sparsification course on RubberWhale, Hydrangea

and Yosemite, where flow is computed on 7 × 7 and 19 × 19
patches.

Fig. 2 presents the results on Sequences Grove2, Grove3

and Street, where the local patch size for flow computation

is 7 × 7. On these sequences, as well as Hydrangea, the

normalized COIN measure outperforms the other measures

uniformly. Experiments are also conducted on Urban2 and

Urban3 [19]. However, as the motion of these two sequences

are too large to be recovered by LK with reasonable accuracy,

the confidence measure on the computed flow does not make

much sense.

B. Motion Boundary Detection

To quantitatively evaluate the performance of the COIN

measure on motion boundary detection, we need to compare

the detected motion boundary to the ground truth. Different

from manually labeling the frames, we generate the ground

truth from the optical flow of benchmark sequences. Specifi-

cally, at each pixel (i, j), we compute the spatial variation of

the ground truth flow (u(i, j), v(i, j)) by

Δ(i, j) = |ux(i, j)|+ |uy(i, j)|+ |vx(i, j)|+ |vy(i, j)| , (14)

and threshold Δ(i, j) over the whole image, with the partial

derivatives in Eq. 14 approximated by central differencing

(forward or backward differencing at image boundaries). Fig 3

shows the ground truth flow and the motion boundary obtained

from widely used benchmark sequences.

We compare the COIN measure to the rank-increase mea-

sure. Particularly, at each pixel, the 2D and 3D structure

tensors are computed from the intensity. The COIN measure

(Eq. 12) and the rank-increase measure are calculated from

the tensors’ eigen-systems. As large values of both measures

indicating high level of motion inconsistency, we vary the

thresholds for both measures, and label the pixels that pass

the thresholding as detected motion boundary pixels. The

recall-precision rates are computed for both detection scores,

as demonstrated in Fig 3. Experiments are conducted on

RubberWhale, Hydrangea, Grove2, Grove3, Urban2, Urban3

and Street. On all sequences except Street, the COIN mea-

sure achieves superior performance. Note that on sequence

Hydrangea, the rank increase measure’s detection is rather

unsatisfactory. The reason is as analyzed in Section II. The

background in the sequence is under a camera motion at about

4 pixels/frame, but is lack of texture compared to the other

moving object, the Hydrangea. This problem is avoided on

sequence street, as the background’s velocity (≈ 1 pixel/frame)

is slower than the foreground (≈ 2 pixels/frame), but has richer

spatial textures. Unlike the rank-increase measure, the COIN

measure performs stably even when the camera undergoes fast

motion.

VI. CONCLUSION

This paper has derived a novel measure for inconsistency in

linear systems of equations, and shown that when applied to

Lucas-Kanade flow computation, it can be used to predict the

confidence with which flow can be recovered at each point in

an image. Analysis suggests and experimental results confirm

that it outperforms other measures that have been previously

used for this task, and that it can also be used as a simple

and effective motion boundary detector. In future we plan to

experiment with other linear systems that occur in computer

vision problems.
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Fig. 1: Comparison of various measures on RubberWhale, Hydrangea and Yosemite (from left to right). In each column, and

from top to bottom: the test image; the performance curves of different measures for flow computed on local 7 × 7 patches;

the performance curves of different measures for flow computed on local 19 × 19 patches. The lower curve indicates better

performance, where the lowest one corresponds to the theoretically ideal performance. All plots have the same legends.

Fig. 2: Comparison of various confidence measures on Grove2, Grove3 and Street (from left to right). The lowest curve

indicates the theoretically ideal performance. The COIN measure achieves best performance on all three sequences.

Fig. 3: Motion boundary detection results on RubberWhale, Grove3 and Street. The 1st row: the color-coded ground truth

flows and the binary ground truth motion boundary maps. The second row: The recall-precision curves of motion boundary

detection by the rank-increase measure and the COIN measure. The higher curve indicates better performance.
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